Assessment Schedule – 2007

Mathematics: Manipulate algebraic expressions and solve equations (90284)

Evidence Statement

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT	Manipulate algebraic expressions and solve equations.	1	(4x-3)(x+2)	A	Any order. $4(x - \frac{3}{4})(x+2)$	ACHIEVEMENT: FOUR A
		2	$\log \frac{a}{b}$	A	$\log ab^{-1}$	
		3	$\frac{2x^2+3x+6}{x(x+2)}$	A	Or equivalent, including $\frac{3(x+2)+2x^2}{x(x+2)}$.	
		4(a)	$x = \frac{11}{3}$	A	Or equivalent. Incorrect rounding without working not accepted.	
		4(b)	x = 5	A	Or equivalent.	
		5	$3t + 55 = 4t + 51$ $t = 4 \min$	A	Accept without unit. Must show equation.	
ACHIEVEMENT WITH MERIT	Solve problems involving equations.	6	$\ln\left(\frac{12}{1.5}\right) = t \ln 1.08$ $t = \frac{\ln 8}{\ln 1.08}$ $= 27.02 \text{ years}$	(A)M	Or equivalent. Accept any correct rounding. (If trial and error used, must show an answer for t >27.)	ACHIEVEMENT WITH MERIT: Achievement plus TWO M OR
		7	$(x+2.75)(x+5.5) = 3x^{2}$ $2x^{2} - 8.25x - 15.125 = 0$ $x = 5.5, -1.375$ $x = 5.5$	(A) M	Not necessary to show both solutions.	THREE M
ACHIE		8	$5x + 14 = (x + 4)^{2}$ $x^{2} + 3x + 2 = 0$ $(x + 2)(x + 1) = 0$ $(-1,9) and (-2,4)$	(A)M	Single coordinates insufficient. x values only (A)	

	Choose algebraic techniques and strategies to solve problem(s).	9	$(x-k)(x-k+1) = 0$ $x^{2}-kx+x-kx+k^{2}-k=0$ $x^{2}+(1-2k)x+(k^{2}-k)=0$ equating coefficients: $1-2k=6$ $2k=-5$	(A)		ACHIEVEMENT WITH EXCELLENCE: Merit plus E
			$k = -\frac{5}{2}$ $\therefore (x + \frac{5}{2})(x + \frac{7}{2}) = 0$	(M)		
			$c = \frac{35}{4}$ or, using quadratic formula	E		
ENT LENCE			$x = \frac{-6 \pm \sqrt{36 - 4c}}{2}$ $= -3 \pm \frac{1}{2}\sqrt{36 - 4c}$		Ignore ONE minor error or incorrect	
ACHIEVEMENT WITH EXCELLENCE			as roots differ by one, $\sqrt{36 - 4c} = 1$ $36 - 4c = 1$	A E	mathematical statement where it has led to correct (or consistent) solution.	
			$4c = 35$ $c = \frac{35}{4}$			
			or, using sum and product of roots: k + (k - I) = -6 (1) k(k - I) = c (2)			
			$2k - 1 = -6$ $2k = -5$ $k = -\frac{5}{2}$			
			$\therefore c = k^2 - k$ $= \frac{25}{4} + \frac{5}{2}$	E		
			$=\frac{35}{4}$			

Judgement Statement — 2007

Achievement	Achievement with Merit	Achievement with Excellence
Manipulate algebraic expressions Solve equations.	Solve problems involving equations.	Choose algebraic techniques and strategies to solve problem(s).
4 × A	Achievement plus 2 × M or 3 × M	Merit plus 1 × E

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.